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Modeling the Planetary Boundary Layer: Frictional InfluenceI

1.0 Introduction

The modeling of the layer of frictional influence in the NMC models
has not been subject to systematic study. There is some evidence that
the presently used formulation possesses deficiencies. In this paper,
we review the simplest ideas for parameterization of a boundary layer of
frictional influence and note some aspects of the theoretical weaknesses
of the current formulation. During the current fiscal year, experimental
computations with revised versions of the boundary layer physics will be
undertaken. Results of those experiments will be published.

2.0 The Structure of the Planetary Boundary Layer

The level at which the mean wind vanishes is usually defined as the
rouhness length and denoted by zo. This quantity is usually estimated at
3% of the obstacle heights. Below zo one assumes that molecular exchange
is dominant.

Between zo=z and h=z (h=50 to 100m), eddy flux of momentum is
relatively very large compared to its divergence. Thus, the law for
momentum conservation,

d- + f k xv + a V = z[K ]

is approximated by the statement

[K 3?] 0 (2)

The quantity Ke is the eddy flux of momentum and is related to the eddy

stress ~ by

-a -- =a[K (3)
az

Variations in a are usually neglected, to write

+ r P ~(4)X ~:-pK a ; 4

The eddy viscosity coefficient K has the dimensions, cm2sec- 1, in cgs units.
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Based on G. I. Taylor's meteorological application of Prandtl's
concept of a mixing length, Q, the quantity K is dimensionally related
to the wind shear by

iK Q2 le (5)

where lvi is the magnitude of the vector wind. The vector v does not vary
in direction within the region near the ground; thus

- iVI (6)

Finally, the mixing length if is argued to be proportional to distance
above the ground

= ke (7)

the k is a universal constant (von Karman's). Therefore,

K = (ke) 2'IZ (8)

When (8) is used in Eq. (2), one gets

k2 f ae A //E -- u* F (9)

in which to is the stress at the ground and we have written u for the
wind speed. The vectoral character of Eq., (2) is retained implicitly.
The quantity, u*,, is the friction veZocity; one has

u* 2
= Io I (10)

Integration of Eq. (9) gives

: ~~~~~u* z 
u , Qn(z7) (11)

the logarithmic profile.
the logarithmic profile.
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2.1 Diabatic Effects

The preceding development did not take into account the possible
influence of buoyancy arising from the thermal stratification of the
atmosphere near the ground. Actually, the lapse-rate of temperature in
this region undergoes very large variations. A parameter which is use-
ful in quantifying the relative significance of buoyancy as against wind
shear is the Richardson's number, Ri,-7

g/fau1
Ri= : Ila J (12)

It is common practice to delineate three regimes:

Free convection Ri < -.03

Forced convection -.03 < Ri < 0.5 (13)

Stable Ri > 0.5

in which the Ri values are appropriate for estimates made at about 4 m.

The value of IRil usually increases with height so the values given
to delineate the range are variable depending upon the level of
estimation of Ri.

In the domain of forced convection, the wind profile suggested by
the Monin-Obukhov dimensional analysis is

u, rz ~ Q B 

u n= ( Znto - C pp 2 - 2) (14)

the so-called log-linear profile. The parameter Q is the heat flux
counted positive when it is directed upwards (lapse conditions). B is
an empirical constant, value about 2, the other symbols are:

specific heat at constant pressure

p air density

g gravity acceleration

0 mean potential temperature
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In deriving (14) we have used the eddy viscosity coefficient
formulation,

K = [kz(l - SRi)]2 De| (15)

Thus, by reference to the mixing length Eq. (5), we have

= ke(l - Ri). (16)

So, lapse stratification is modeled as increasing the mean free path
or mixing length, and stable stratification as decreasing that length.

This formulation of the forced convection regime is widely accepted.
The majority of naturally occurring situations are well treated by it.

However, the formulation of the free convection and stable regimes
is not so widely agreed upon. Observational data is more difficult to
come by and in the stable regime little turbulence occurs.

Both the GFDt and NMC formulations of the boundary layer are
appropriate under neutral conditions, Ri = 0, only.

2.2 .Drag Coefficients

The stress, A, acting on a surface may be related to a wind measure-
ment at a given altitude, say h, by use of a parameter called the drag
coefficient. One may write,

To= - p CDV(h)Iv(h) (17)

in which C is dimensionless. Since the stress vector is assumed to be
anti-paralyeI to the direction of v in (17), it follows that v must be
measured within the layer of constant flux, i.e., within the Prandtl
layer. 

It is clear from Eq. (10) and Eq. (17) that one may write

u*2 = CD v(h)i 2
(18)

If we write u(h) = 1v(h){T then

CD: [ur] (1l9)D Tu(7 

*cf. Miyakoda, et al., 1969, and Smagorinsky, et al. 1965.
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So from Eq. (14) one may derive

u(h) = u,[I Zn h Q -3 0g(h-fo)] (20)
U~h) u~lt zo Cp P, e- 

thence it follows that

h Q
CD = 9 [ lZn Yo -c-3 8 (h-el)1]2 (21)

C pp u,:~~~~~~~
In the adiabatic case, Q=0, one has

h:N :~~~~~~~~~~~~~~~~~(2
CD = k2/(n io)2 (22)

ad.

One may therefore expect to be able to specify the value of CD in
neutral conditions simply by knowing the roughness height; the parameter
CD must be chosen appropriately for the height at which the wind is
estimated.*

In diabatic stratification, we see that the formulation of the drag
coefficient is more complex.

2.3 Geostrophic Drag Coefficient

The theory of the Prandtl layer has been developed largely from the
viewpoint of micrometeorology. From the macroscopic viewpoint--that
appropriate to the global model--one would prefer a less elaborate
formulation of the stress acting at the Earth surface.

To that end, one may appreciate the work of Lettau (1959) and
Blackadar (1963) which is based on estimates of the stress ising the
surface geostrophic wind. In a boundary layer model developed by the
present writer (Gerrity, 1967), the geostrophic theory was utilized with
considerable success.

The surface Rossby number is defined by Lettau as

Rao 5 G/(fez) (23)
:

in which G is the surface geostrophic wind speed and f is the Coriolis

*cf. p. 21 in Priestly, C.H.B., Turbulent Transfer in the Lower Atmosphere,
Univ. of Chicago Press, Chicago, 1959, 130 + xii.
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parameter. He then defines the geostrophic drag coefficient as

C = * (24)
g G 

2

Lettau provides data on the relations between u, and G in neutral
conditions; we used later data compilations by Blackadar to get

u* = G[.07625 - .00625 log Ra (25)
uN 10 R0

the quantity in brackets is the geostrophic drag coefficient.

Lettau provides an indication that the value of C in diabatic
conditions [within the forced convective regime] is about 20% greater
in lapse and 20% less in stable conditions.

Now if one accepts (25), it is easy to derive the wind speed at any
level within the neutral Prandtl layer. To determine the vector wind
we need a relation between the direction of the surface geostrophic wind
and actual wind direction. Since the wind is always directed toward
lower pressure [cf. VI in Charney and Eliassen, 1949] in the frictional
layer, we need only specify the angle between the two vectors:
geostrophic wind and real wind.

Based on data presented by Blackadar (1963) we found that

= a(log1 0Roo) + b log10 Ro + (26)

with a = .625, b = - 12.75, and c = 80.625.

Sof i varies between 32.50 for R = 105 and 15.6°0 for R = 1010.

The use of these relationships will permit the calculation of the
information usually gleaned from the Prandtl layer. It is my opinion
that an information layer at the top of the Prandtl layer is not required
for reasonable accuracy in modeling the stress near the ground. But a
consistent use of the geostrophic approach should be employed.

It should be noted that Lettaut's geostrophic drag coefficient (cf.
Eq. 24) is related to the surface stress to by the equation,

u*2 = (GC )2 = (27)
g P
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But if this is compared with Eq. (17),

CD j -(j h) =;p

it will be seen that a difference occurs in the exponentiation of C
as against CD. This difference is very important when one comes to
quoted values of the drag coefficient. If one were to assume Lettauts
values which are

Cg 0-03 0C

then the value of CD is

(.030) 2 G2 = CDv(h) 1v(h)] 

or CD = .9 x 10- 3[G2/[v(h)1 2] (28)

We shall return to this point in section 5

2.4 The Ekman Layer

Above the Prandtl layer is a layer of transition within which the
surface frictional influence is absorbed. This layer is usually called
the Ekman layer.

Rossby and Montgomery (1935) suggest that within this region, the
eddy viscosity diminishes to zero linearly with height. This is the
formulation adopted by GFDL. The layer is variously treated as having
a depth between 1 and 2.5 km; the latter is used by GFDL.

Ekman's theoretical model was derived for the ocean in a barotropic
steady state. Blackadar has recently shown the significance of the
baroclinicity of this layer, and it is obvious that the steady state
hypothesis is unacceptable except as a first approximation.

2.5 The Equatorial Boundary Layer

Reflection on the structure of the wind profile in the Southern
Hemisphere suggests that near the equator the boundary layer must be
treated quite differently.

It is clear that frictional effects will still be important but
the absence of geostrophic controls on the wind field will require some
additional thought. Some insight may be gained by a study of wind
observations in equatorial latitudes.
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3.0 Critique of the Current Model

At present the NMC model uses a 50 mb deep layer in which the
effects of friction are modeled. If a is the thickness of the boundary
layer, one has from the hydrostatic equation:

RTv T
6= .gp 50 = 1.448 x10 5 cm

g(pg-25) pg - 25

in which pg is the station pressure in mb, T is the mean virtual
temperature of the layer, R is the gas constant for dry air (2.8704 x 106
cgs), and g is gravity acceleration (980 cm sec-2 ).

_260 T(OK) 3

6 m 260 | 280 1 300|

pg(mb]

Table 1. Depth of NMC Boundary Layer as a function of temperature and
surface pressure.

Table 1 above indicates a variation in the geometric depth of the
NMC boundary layer. It is deeper at high altitude stations and at warmer
temperatures.

If we consider the formula (Eq. 22) for the adiabatic drag co-
efficients dependence on the altitude of measurement, it is clear that
one ought to expect a decrease in CD for higher altitudes and warmer
temperatures. The current formulation is the reverse of this, since the
drag coefficient is generally larger over mountainous grid points.

The NMC values of CD are taken from the work of Cressman (1960), who
was attempting to formulate a frictional influence for use with the baro-
tropic model. Cressman's drag coefficient formulation incorporates a
parameterization of the influence of mountain wave momentum transfer
which is not included in the usual boundary layer analysis.

1025 376 405 434

925 414 441 477

825 470 506 542
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Cressman defines the Drag Coefficient [his Eq. (7)] with Vh the
wind at the gradient level

~~~~~~~~~~(29Cc Vh2 (29)

He then asserts that Cc may be thought of as a linear combination of
two physical factors. He writes C2 for the drag associated with the form
of the relief and C1 for a relatively constant value associated with the
drag over flat land or the oceans.

To C1, Cressman ascribes an average value of 0.12 x 10-2; he quotes
values as follows for C2,

(a) land with trees and low relief: C2 = 0.1 to 0.2 x 10-2

(b) moderately high mountains:2 .2 to .5 x 10-2
C 2= 2t 5x -2

-(c) very high mountains: C2 = .5 to .9 x lo02

He used the C2 estimates to fix the parameter K in the formula,

KnhKnh= d C2 (30)
2

in which n is the number of ridges of height h running across a grid
square, of side d, perpendicular to the wind. The formula was then applied
to topographic charts to produce a map of C2. He then added the constant
value of C1 to the mapped value of C2 to obtain a final map of Cc. The
average value (area weighted) of Cc is 0.22 x 10-2, which is comparable
to estimates made by other workers cited in Cressman's paper.

It seems clear that in Cressman's work, major emphasis is put on
the estimation of the so-called form drag. Cressman's estimate of this
parameter is based on Sawyer's and Scorer's method for estimating momentum
exchange due to internal gravity waves excited by the passage of an air
stream over undulating terrain. Although it is possible that this formu-
lation has some utility, I think it is fair to criticize the method on
theoretical grounds.

It is not at all clear that the excitation of internal gravity waves
is a property of the topography alone. Clearly, if the stratification is
neutral, no internal gravity waves are possible. Furthermore, the
direction of the wind relative to the ridge line is important; but this
formulation does not take that into account. The influence of small
regularly spaced ridge lines [the situation in older mountain chains]
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would seem more significant in exciting wave motion than the influence
of random rugged peaks, as in the Rocky or Himalayan Mountains.

3.1 The Equation Governing Flow Near the Ground

In a-coordinates, the equation governing horizontal motion is
(neglect map factor)

+ (v-V)v + a + fkxv + cp Vf + V = + aaT (31)
at Da P gap aa

If the depth of the boundary layer is such that pa is a constant, one
has the continuity equation

- a d
V-v + = 0 (32)

So Eq. 31 may be written,

av + t ouV + T v-v + a + fkxv + cpeVO + ±
at au

~aad ~ al~ ~(33)aa 3T
=+ *gp a-

in which i is the unit vector in the x-direction and ~ the unit vector
in the y-direction. Suppose that Eq. (33) is vertically integrated

between a = 0 and a = 1 with the boundary condition a = 0 at a = 1.

Then if a bar over a quantity denotes avertical average, one has*

ai7 -- +Vatv + V iu + V' -(V)o +fkxv + cpOV + V
at 

(34)

: _ g'P .(to- tl)

*N.B. The Tomeans I at a = 0, the top of the boundary layer,
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If VO is small, we may write

cpOV0r =cpVT (35)
p p

Let us also define uv = x, v = y . Then Eq. (34) becomes

37+ t V'~x + J V'*y - (av) + fkxv-+ V(cpT + %) = - g pp(To-T1) (36)

If we form the scalar product of v with Eq. (36)

-~~~~~~ ~- 4- - - -
V + u V.Tx + v V.Ty -ao(vvo)+ v.V(cpT + p)

: = g- [v O- v ] (37)

Now in the NMC model T is zero, i.e., no stress acts on the upper bound-
ary. Also v is identified with the wind carried in the middle of the
layer and it is- antiparaZlel to tj- Let v--v = 2k, with k the kinetic
energy per unit mass:

_~ -- _ _- aa-7
k + uV- + V-y - 6o(v-vO) + vV(cpT + ) = +gp(vT) (38)at

Now - P CcIIv (39)

by the NMC formula, so

v-T1 =- 2 p CclVIk (40)

k + u V'Tx + V y 6o(.vo) + )

(41)

-=_2gp - C I vk - E

The E represents the rate of dissipation of specific kinetic energy within
the boundary layer. The term,_-

pr e ttv. -(cpT + ) is a production term
provided that

k = - 9.(CpT + +) > 0 (42)
at
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After Charney and Eliassen (op.cit.) and others, one expects approximate
balance between the production and dissipation terms. Thus, one finds
that the angle formed by'. Wand the gradient of c T + T is determined by

p

cosi =-2gp- Cck (
Co : F 3 (43)

0 ; |V~~~~~I(CPT+f) I- 
It should therefore be clear that the use of v as representative

of both the mean boundary layer wind and as an estimate of the gradient
wind as is done in the current NMC model is fundamentally erroneous.
Since the vertical transport term, o(v-V;) is a residual remaining after
approximate balance of generation and dissipation, its accurate
computation is to be seriously doubted.

4.0 Critique of the GFDL Model Friction Formulation

The GFDL model carries one information level at an altitude of 70 m
above the ground. This level is considered to be at the top of the
Prandtl layer. The wind profile below 70 m is taken to be logarithmic,
i.e., it is assumed that the layer is in neutral stratification for
computation of the frictional stress. The drag coefficient is given by
Eq. (22) and Zo is taken to be a constant 1 cm. I do not know if this
formulation has been modified to account for the form drag of Cressman.

Above the Praidtl layer it is assumed, following Rossby and
Montgomery, that the eddy viscosity coefficient decreases linearly to
zero at 2500 m. The model has two and one-half layers in the region
between z = 70 and z = 2500 m. Thus the convergence of vertical eddy
transfer of momentum is explicitly calculated at three wind information
levels, 70 m, 640 m, and 1700 m. Variations in stability do not affect
this process, but one must recall the convective adjustment and ask if
this adjustment modifies the Richardson's number in such a way as to
imply that stability modifications are never appropriate for the wind
field.

It is my opinion that the use of the Prandtl layer wind field
information level is not justified solely for calculation of the stress.
A geostrophic drag formulation would be as accurate in my opinion. Thus
unless other considerations are involved, one might "save this storage"
for other uses.
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5.0 Summary

In this note, attention is focused upon certain questionable aspects
of the formulation of frictional influences in the NMC models. Two
points should be specifically noted:

a. The drag coefficients used in the NMC model are too large,
since they reflect the "mountain wave drag" consideration of
Cressman's original work.

b. The use of the model's boundary layer wind in the frictional
drag estimate is physically incorrect; one should rather be using
an estimate of the gradient wind.

It seems appropriate to note these points now, since NMC's newer high
resolution models ought to be capable of delineating the real effects of
friction upon the observed weather.

In addition a parameterization of the influence of orographically
induced gravity waves has recently been developed (Collins, 1976). It
may serve to incorporate more accurately this effect in a multilayer
model than was possible in Cressman's original work with a barotropic
model.
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